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FOREWORD

The test program reported herein was conducted at the request of
the Air Force Aero-Propulsion Laboratory (AFAPL), Air Force Sys-
tems Command (AFSC), Wright-Patterson Air Force Base, Ohio, under
Contract AF33(615)-2691 for the Chrysler Corporation, Space Division,
Huntsville Operations, under Program Element 62402F, Project 3145,

The results of the test were obtained by ARO, Inc. (a subsidiary of
Sverdrup & Parcel and Associates, Inc.), contract operator of the
Arnold Engineering Development Center (AEDC), AFSC, Arnold Air"
Force Station, Tennessee, under Contract F40600-69-C-0001. The
test was conducted in Propulsion Research Area (R-2C-4) of the Rocket
Test Facility (RTF) from April 26, 1968, to March 27, 1969, under’
ARO Project Number RW0903, and the manuscript was submitted for
publication on July 2, 1969.

Information in this report is embargoed under the Department of
State International Traffic in Arms Regulations. This report may be
released to foreign governments by departments or agencies of the
U. S. Government subject to approval of the Air Force Aero-Propulsion
Laboratory (APIE-2), or higher authority within the Department of
the Air Force. Private individuals or firms require a Department of
State export license.

This technical report has been reviewed and is approved.

Donald W. Ellison Roy R. Croy, Jr.
Lt Colonel, USAF Colonel, USAF
AF Representative, RTF Director of Test

Directorate of Test
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ABSTRACT

Design characteristics and performance of a combustor for use as
a high energy, ionized gas source in magnetohydrodynamic power
generator studies are described. The liquid oxygen (LO2)/JP-4 com-
bustor was operated over a chamber pressure range from 240 to
300 psia and at a characteristic exhaust velocity efficiency of 91 % 1
percent for oxidizer/fuel ratios ranging from 2.0 to 3.1. Combustor
power output was approximately 17.5 to 20, 5 megawatts (MW) over
its range of operation. Provisions were incorporated into the design
for injection of a saturated solution of water and cesium carbonate
Seeding agent into the thrust chamber to provide a high ion concentra-
tion in the exhaust gases.

This document is subject to special export controls and
each transmittal to foreign governments or foreign
nationals may be made only with prior approval of Air
Force Aero-Propulsion Laboratory (APIE-2), Wright-
Patterson AF Base, Ohio 45433.
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and oxidizer-to-fuel flow ratio (O/F) with the exhaust gases expanding
to a specific value of nozzle exit static pressure.

The design criteria for the hot ionized gas source (combustor) de-
scribed herein departs from traditional design considerations, which
are normally concerned with obtaining a maximum specific impulse at
a specific operating condition, in that the combustor discussed herein
was required to operate over a wide range of O/F ratios and chamber
pressures. The final design was based on experience gained in develop-
ing small thrust rocket engines used in previous test programs in RTF
and on information contained in published literature.

The primary function of the combustor is to provide a high energy
(approximately 20 MW of power), ionized gas source for application in
an MHD power generation system. The combustor design is based on
the following specified design criteria:

1. Propellants: LO2/JP-4

2. Propellant Total Mass Flow Rate: 3.75 to 4.25 lby,/sec
3. Oxidizer/Fuel Flow Ratio: 2.0to 2.8

4. Provisions for Seed Injection into Combustion Chamber
5. Exhaust Nozzle Exit Half-Angle: 0 deg

6. Exhaust Nozzle Exit Diameter: 2.0 in.

7. Nozzle Throat Diameter: 1.76 in.

8

. Run Duration: Té 20 min

In addition to the above design criteria, it was required that the-:
combustor interface with the MHD channels and provide a sufficient
annulus clearance between the MHD channel support tube and combustor
for MHD channel electrical and instrumentation cables and MHD channel
coolant lines. Consequently, the diameter of the combustor, including
the cooling (water) jacket was limited to 4. 75 in,

In the following sections, the design requirements and character-
istics of the injector, the combustion chamber, and the nozzle are
described. Details of the combustor coolant system are discussed. A
schematic of the combustor configuration is presented in Fig. 1 (Appen-
dix I). The resultant combustor design data are presented in Table I
(Appendix II).
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2.2 INJECTOR DESIGN

The design of an injector is largely empirical since a complete
theory for relating design parameters to combustor performance and
combustion phenomena has not been devised (Ref. 3).

The primary functions of the injector are to introduce and meter
the propellant flow into the combustion chamber and to atomize and mix
the propellants in such a manner that a correctly proportioned, homo-
geneous fuel-oxidizer mixture will result that can be readily vaporized
and burned.

Coaxial-type injectors for 500- and 1000-1bs thrust LOg/RP-1 com-
bustors developed during previous RTF test programs have proved to
be successful in performing these functions. Therefore, a coaxial-type
injector design approach was used for the combustor (Fig. 2).

The injector for an LO2/JP-4 combustor would normally be designed
to operate at an O/F ratio of approximately 2.2 to achieve maximum
specific impulse. However, when the requirement exists for the com-
bustor to operate at optimum efficiency over a range of O/F ratios from
2.0 to 2.8, experience gained in previous coaxial-type injector develop-
ment programs indicated that optimum performance is achieved by using
a higher design O/F ratio. Therefore, an injector design O/F ratio
of 2.6 was chosen. Criteria used to size the oxidizer/fuel set flow areas
were based on an O/F velocity ratio of 2,0 while maintaining both oxidizer
and fuel injector pressure drop within 10 to 50 percent of chamber pres-
sure.

The coaxial-type injector (Fig. 2b) selected for the combustor has
54 oxidizer tube-fuel annuli sets located in three concentric rings.
Liquid oxygen and JP-4 fuel were injected into the combustion chamber
through tubes and annuli, respectively. This arrangement (oxidizer
tube-fuel annuli} was used to promote atomization and mixing, to reduce
injector face heating, and to provide fuel cooling for the thrust chamber
walls,

The injector oxidizer/fuel sets were sized to meet the velocity ratio-
pressure drop design criteria. Fuel annuli were 0. 073-in. ~-OD and
0.064-in. -ID. The oxidizer tubes (0. 064-in. -OD and 0. 045-in. -ID)
were crimped (Fig. 2b detail) to a minimum width of 0. 021 in. to meet
the velocity-pressure drop criteria, to increase atomization, and to
improve fuel-oxidizer mixing. The oxidizer tubes were extended
0. 075 in. from the injector face to prevent excessive injector face heat-
ing and to promote mixing of the oxidizer and fuel in the vaporized state.
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All parts of the injector were fabricated from type 347 stainless steel.
Photographs of the injector are shown in Figs. 2c and d.

The injector is equipped with a removable igniter fuel-seed pin
(Fig. 3) positioned in the center of the injector face. The pin is designed
to accomplish four individual functions:

1. Provide a passage for injection of a pyrophoric igniter fuel
(triethylborane or TEB) into the combustion chamber during
the ignition phase,

2. Provide a passage for injection of secondary fuel (JP-4) into
the combustion chamber after the ignition phase,

3. Provide a passage for injection of seed (saturated solution of
water and Cs2CO3) into the combustion chamber, and

4, Provide a pressure port for measuring combustion chamber
pressure.

The igniter fuel (TEB) was injected into the combustion chamber
through six V-shaped grooves at an angle to induce a swirling action
which increases the mixing of the igniter with the oxidizer. After igni-
tion, secondary fuel (JP-4) was injected into the combustion chamber
through the igniter grooves. Control of the secondary fuel flow rate
provides a means for controlling the main fuel flow injection velocity.
During previous developmental testing of a similar combustor configu-
ration, optimum combustor performance was obtained with a secondary
fuel flow rate of approximately 30 percent of the total fuel flow. There-
fore, a secondary fuel flow rate of 30 * 2 percent of the total fuel flow
rate was used during all combustor firings during this test program.

A seeding material consisting of 70-percent (by weight) solution of
Cs9CO3 in water was injected into the combustion chamber through six
orifices in the igniter fuel-seed pin (Fig. 3).to provide a high ion con-
centration in the exhaust gases. The orifices were sized to inject the
seeding agent into the thrust chamber at controlled flow rates consistent
with awvailable supply pressures. The individual seed injection system
was used to avoid fluid and propellant valving incompatibility problems
which could be encountered by injecting the seed into the combustion
chamber through the main fuel annuli or igniter-secondary fuel grooves.
An individual seed injection system also increases the versatility of the
injector since different types of seeding agents may be used without
- affecting the operation of the igniter, fuel, or oxidizer systems.

In addition to performing the above functions, the igniter fuel-seed
pin was equipped with a port for measuring steady-state chamber pres-
sure.
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SECTION |
INTRODUCTION

A magnetohydrodynamic (MHD) electric power generator is classed
as a direct-energy conversion device. Ionized gas flowing at high
velocity through a channel is acted upon by a transverse magnetic field
to produce an electromotive force perpendicular to the velocity vector
and the magnetic field. The same physical principles are involved in
an MHD generator as in a conventional electric generator except that
conducting gases replace the current-carrying conductors of the rotor.

Chrysler Corporation, Huntsville Operations, is currently engaged
in a research and development program aimed at the development of a
1-MW, flightweight, MHD generator system to power a plasma arc
illuminator (Refs. 1 and 2). Primary components of the system will
include a combustor (plasma generator) coupled to an MHD channel
immersed in a magnetic field provided by a superconducting magnet.
The output of the MHD generator will power the plasma arc illuminator,

Part of the overall development program was the requirement to
design, fabricate, and qualify a liquid oxygen (LOs)/JP-4 combustor to
provide the high energy (approximately 20 MW) ionized gases for the
MHD channel., The design and fabrication of the MHD combustor and
its associated systems were performed by ARO, Inc., personnel. Test-
ing of the MHD combustor was conducted in Propulsion Research Area
(R-2C-4) of the Rocket Test Facility (RTF).

The design concepts and operating characteristics of the LOg/JP-4
MHD combustor are presented herein. Performance characteristics
both with and without injection of a saturated water and cesium carbonate
(Cs9CO3) solution into the thrust chamber are discussed.

SECTION II
COMBUSTOR DESIGN CHARACTERISTICS

2,1 DESIGN REQUIREMENTS

Design criteria for small thrust (=1000 lbf), liquid-propellant rocket
engines are not well defined in the literature since each particular design
depends on the application. Normally, a combustor consisting of an in-
jector, combustion chamber, and nozzle is designed to operate with a
given propellant combination at a constant combustion chamber pressure
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2.3 THRUST CHAMBER DESIGN

The thrust chamber (combustion chamber and nozzle, Figs. 4a
and b) was designed to provide adequate mixing and combustion of the
propellants and to provide uniform, parallel flow at the nozzle exit.
The thrust chamber was fabricated from Mallory® 3 copper alloy be-
cause of the excellent thermal and physical properties of the material.

The inside diameter of the combustion chamber (Fig. 4a) was
3.75-in. Combustion contraction ratio (chamber cross-sectional area/
throat area) was 3.61 and was designed to avoid a substantial loss in
energy efficiency (Ref. 3). A combustion chamber-to-nozzle throat
convergence half-angle of 30 deg was used to ensure a steady combus-
tion gas velocity increase and a uniform combustion gas velocity pro-
file as the combustion gas approached the nozzle throat (Ref. 4). Com-
bustion chamber length (injector face-to-nozzle throat) was 10. 86 in.,
and the combustor characteristic length (L*) was approximately 33 in.

The nozzle is defined as the part of the thrust chamber from the
throat to the exit of the thrust chamber. Coordinates (Fig. 4a) for an
axially symmetric supersonic wind tunnel test nozzle designed by the
method of characteristics for inviscid flow of a perfect gas (Refs. 5 .
and 6) were used to establish the combustor nozzle geometry. A method
of characteristics computer program for a perfect gas with a specific
heat ratio (v) of 1. 22 (Ref. 7) was used to determine the Mach number
profile (Fig. 5) and flow angularity (Fig. 6) at the nozzle exit to further
substantiate the design coordinates. Nozzle exit Mach number was com-
puted to be 1.57 £ 0. 01, A boundary-layer computer program (Ref. 8)
was used to determine the boundary layer in the nozzle. Boundary-layer
thickness was computed to be approximately 0.0001 in, at the nozzle exit.

2,4 COMBUSTOR COLLANT SYSTEM

Run durations up to 20 min, specified in the design criteria (Sec-
tion 2. 1), required cooling the combustor to ensure successful, safe
operation. The combustion chamber and nozzle were enclosed by a
water jacket to provide cooling for the assembly (Fig. 1).

Generally, small thrust (<1000 lbf), work-horse-type combustors
can be successfully cooled with a water flow rate 1.5 to 3.0 times the
total propellant mass flow rate and with a water velocity at the nozzle
throat of 80 to 100 ft/sec. A coolant velocity of one-half the required
throat velocity is usually adequate to cool the combustion chamber walls
and the divergent walls of the nozzle.
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The coolant criteria (flow rate and velocity) and a heat transfer
computer program (based on equations in Ref, 3) developed during pre-
vious combustor development programs at RTF were used in an iterative-
type process to establish the combustor coolant system requirements..
The heat transfer program (RTF Program No. 57) calculated the com-
bustor heat transfer rates and temperatures for an assumed water tem-
perature increase (outlet water temperature minus inlet water tempera-
ture) in increments of 10°F. Primary inputs to the computer program,
in addition to the water velocity and flow rate, were the thrust chamber
thermal conductivity and physical dimensions and the combustor gas
properties {conductivity, specific heats, temperature, viscosity, and
velocity).

Cooling water flow was supplied to the inlet at a pressure of 200 psia
and at a flow rate of 15 lby,/sec. Outlet water pressure was maintained
at 100 psia to prevent the possibility of cavitation and to ensure that the
water pressure exceeded the critical pressure level. Thrust chamber
annular water passages were sized to provide a water velocity of 45
and 90 ft/sec (for a flow rate of 15 lby,/sec) along the combustion cham-
ber and nozzle throat walls, respectively.

Typical calculated heat transfer results used to establish the validity
of the assumed cooling water flow rate and velocity are shown in
Figs. 7a, b, and ¢ for the combustion chamber, nozzle throat, and
nozzle exit walls, respectively. The combustor coolant system has
proved to be successful.

SECTION 11l
INSTALLATION AND TEST PROCEDURE

3.1 INSTALLATION

The combustor was installed in Propulsion Research Area (R-2C-4)
of RTF to determine the operating characteristics and performance of
the combustor (Fig. 8). The combustor was mounted on a support sys-
tem and connected to the facility propellant and coolant systems. The
combustor nozzle exit flange was aligned with and bolted to the exhaust
diffuser flange. The 12-in, -diam, 8-ft-long exhaust diffuser extended
through a rubber slip-joint seal at the forward bulkhead of a spray cham-
ber, containing one air spray ring and six water spray rings. A 12-in.
exhaust duct was bolted to the downstream end of the spray chamber to
direct the cooled exhaust gases into the facility exhaust ducting to be
discharged into the atmosphere.
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A schematic of the propellant system is shown in Fig. 9. Com-
bustor ignition was accomplished with 0.5 lb,, of TEB pyrophoric fuel.
The LOg2 was supplied from two 5530-gal. tanks pressurized with
gaseous nitrogen (GN9). An automatic pressure control system main-
tained tank pressure during firing at a value that provided the desired
flow rate.

The JP-4 fuel was supplied to an aircraft-type fuel pump from
facility storage at a pressure of 60 psia. The desired combustor JP-4
flow rate was provided by adjustment of a fuel bypass system back to
the facility fuel storage reservoir.

The Cs9CO3 seeding agent was supplied to the combustor from a
seed-charged cylinder. The seeding agent was discharged from the
cylinder by a piston driven with water pressurized with GNo. The
water was stored in a 75-gal. tank. All propellant systems incorpo-
rated provisions for purging the lines with dry GNa.

3.2 INSTRUMENTATION

Instrumentation (Table II and Fig. 9) was provided to measure the
combustor chamber pressure, injector pressures, propellant and seed
tank pressures, nozzle exit pressures, propellant and seed flow rates,
and combustor cooling flow rate and temperature rise.

Bonded strain-gage-type transducers were used to measure pres-
sures. Propellant, seed, and cooling water flow rates were measured
with turbine-type flowmeters. Iron-constantan thermocouples were
used to measure fuel temperatures. Copper-constantan thermocouples
were used to measure cooling water, LOg, and seed temperatures.

Combustor' pressure, flow, and temperature data were recorded
on magnetic tape from a multi-input high-speed, analog-to-digital con-
verter at a scan rate for each channel of 75 times/sec. A photograph-
ically recording, galvanometer-type oscillograph and null-balance
potentiometer-type setup chart recorders provided an independent back-
up of selected instrumentation channels and a means for monitoring test
activity.

3.3 CALIBRATION

All transducers and system calibrations (Table II) performed during
this test program are traceable to the National Bureau of Standards (NBS).
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Each link in the traceability chain back to the NBS is maintained and
documented by the AEDC Standards Laboratory (Ref. 9).

The flow measurement transducers, installed in a section of their
associated piping, were calibrated in the Standards Laboratory utilizing
a dynamic weigh-type water flow calibration system to determine their
volumetric flow versus frequency output relationship. Before and after
each test period, the flow recording systems were calibrated by apply-
ing known frequency input levels from a frequency generator calibrated
in the Standards Laboratory.

The temperature transducers (thermocouples) were fabricated from
wire conforming to Instrument Society of America specifications. Be-
fore and after each test period, known millivolt levels were applied to
each temperature recording system, and the corresponding tempera-
ture equivalents were obtained from 150°F reference tables based on
the NBS temperature versus millivolt tables. Nonlinearity in the
thermocouple characteristics were accounted for in the data reduction
program.

The pressure measuring transducers were calibrated in the Standards
Liaboratory to establish their applied pressure versus resistance shunt
equivalent pressure relationship. Before and after each test period,
multiple-step resistance shunt calibrations were performed to calibrate
the pressure recording system.

3.4 TEST PROCEDURE

Before each test period the instrumentation systems were calibrated,
and the propellant, seed, and coolant systems were prepared for opera-
tion. When the pressures were set to give the desired combustor flow
rates, a combustor firing sequence was initiated at a time designated as
T which automatically controlled the events as shown typically in
Figs. 10 and 11 and time sequenced as follows:

Ty Automatic firing sequence started.

Ty + 0.6 sec Igniter (TEB) valve opened (TEB charge depleted
in approximately 1 sec and followed by JP -4).

Tqg + 0.8 sec LOg propellant valve opened.
Tp + 0.95 sec LO5-TEB ignition.

Tg + 1.00 sec LO32-TEB combustion chamber pressure switch
satisfied (75 psia), signal for fuel valve to open.
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To+ 1.50 sec Fuel valve opened.

Tp+ 1.70 sec Main stage steady-state combustion chamber
pressure established.

Tp + 2.00 sec Seed valve opened.

The engine firing duration was nominally 5 to 20 sec, at which time
the firing was terminated by the automatic firing sequence normal com-
bustor shutdown at a time designated as Tg. Typical shutdown events
occurred as follows:

Tg - 0.5 sec Seed valve closed.

Tg Normal shutdown event initiated upon elapse of
prescribed run time.

Tg + 0. 22 sec LO9 propellant valve closed.
Tg + 0.27 sec Igniter valve closed.

Tg + 0.46 sec Fuel valve closed.

When the engine firing was completed, the injector was purged with
GNy to remove contaminants from the thrust chamber.

SECTION IV
COMBUSTOR OPERATING CHARACTERISTICS AND PERFORMANCE

The objective of the test program reported herein was to design,
fabricate, and qualify an LLOg/JP-4 combustor to provide a hot ionized
gas source for use in an MHD power generator system.

In the sections to follow, the operating characteristics of the com-
bustor components (injector, combustion chamber, and nozzle) and the
performance of the combustor both with and without seed injection are
discussed.

4.1 INJECTOR

Injector oxidizer and fuel velocities were approximately 95 and
45 ft/sec, respectively, corresponding to an oxidizer and main fuel in-
jector pressure drop of 110.and 35 psid for mass flow rates of 2.9 and
0. 8 lby,/sec, respectively.
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Injector pressure drop variations with flow rates are shown in
Fig. 12 for LOg, main JP-4 fuel, secondary JP-4 fuel, and a saturated
solution of water and Cs9COg3.

During the initial combustor checkout test, the fuel annuli became
clogged by the LOg-igniter (TEB) combustion products during the igni-
tion sequence. Clogging was subsequently prevented by increasing the
fuel annuli GN9 purge pressure to a value slightly exceeding (5 to 20 psi)
the LLO2-TEB combustion chamber pressure.

The igniter fuel (TEB) injected into the thrust chamber was followed
by JP-4 fuel (secondary JP-4 fuel) through the igniter ports. Approxi-
mately 30 percent of the total JP-4 fuel was injected into the chamber
through the igniter ports to improve fuel-oxidizer mixing and to provide
cooling for the injector face.

4.2 COMBUSTION CHAMBER AND NOZZLE EXIT PRESSURES

The combustor exhibited a smooth starting characteristic and oper-
ated with a stable combustion chamber pressure during all combustor
firings. Combustion chamber pressure fluctuation was nominally
15 psia for all operating conditions (Fig. 11). Seed solution injected
into the thrust did not affect the combustion chamber pressure stability.

Combustor nozzle exit static pressure measurements were made
0.2 and 0..4 in. downstream of the exit plane in a 2. 00-in. -diam section
attached to the combustor. The ratio of exit static pressure to chamber
pressure ranged from 0, 30 to 0. 34, compared with a theoretical pres-
sure ratio of 0. 265 for frozen composition (Ref. 10) and with a theo-
retical pressure ratio of 0.29 for equilibrium composition (Ref. 11)."

4.3 CHARACTERISTIC EXHAUST VELOCITY VARIATION WITH O/F RATIO

The characteristic exhaust velocity (c*) of a combustor is fre-
quently used as a measure of the energy available after combustion and
can be expressed as

Pc A g
c* = ——
Wi
where P, is the combustion chamber pressure (lbs/in. 2) measured at
the 1n3ector face, At is the nozzle throat area (in.2), g, is a dimensional
constant (32, 2 1b -ft/lbf-sec ), and wt is the total propellant flow rate
(lbyy,/sec). The combustor efficiency may be defined as the ratio of the

10
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measured c* to theoretical ¢*. The theoretical c* used in this report
is based on frozen composition (Ref. 10).

The combustor was operated at a chamber pressure ranging from
240 to 300 psia for O/F ratios ranging from 2.0 to 3.1. The variation
of c* with O/F ratio is shown in Fig. 13. The value of c* ranged from
a minimum of 5010 ft/sec at an O/F ratio of 3.1 to a peak of 5220 ft/sec
at an O/F ratio of 2.2, Engine efficiency was nominally 91 £ 1, 0 per-
cent for O/F ratios ranging from 2.0 to 3.1 (Fig. 14). Engine efficiency
was approximately 3 percentage points less than the efficiency used to
establish the design criteria. Combustor power output was approxi- .
mately 17.5 to 20.5 MW,

4.4 COMBUSTOR OPERATION WITH SEED FLOW

The seed material used during this investigation was a 70-percent
(by weight) solution of Cs9CO3 in water. The percent seed flow is
defined as

[We/(we + ws)] x 100

where Wwg is the seed flow rate (lby,/sec). Arbitrarily, the combustor
characteristic exhaust velocity with seed flow (cg*) is defined as

PcAyge
Seed was injected into the combustion chamber approximately 1.0 sec
after combustor ignition and was continued until approximately 0.5 sec
before combustor shutdown. The seed flow rate was varied from 0 to
0.64 lby, /sec at a nominal 1.O3/JP-4 mixture ratio of 2. 86 and at a
total propellant (LOg + JP-4) weight flow of 4.0 1by,/sec.

The effect of percent seed flow rate on cg* is shown in Fig. 15.
The cg* decreased from 5100 fi/sec at a seed flow rate of 0 percent fo
4550 ft/sec at a seed flow rate of 14 percent. The low values of cg* are
attributed to the noncombustible seed solution being injected into the
combustion chamber.

4.5 COMBUSTOR HEAT TRANSFER RATES

Heat transfer rates (computer-calculated) for the combustion cham-
ber, nozzle throat, and nozzle exit are shown extrapolated for the axial
length of the thrust chamber in Fig. 16. The heat transfer rates and
the applicable thrust chamber wall surface area were used to calculate

11
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the heat transferred from the thrust chamber to the coolant. The thrust
chamber heat transfer calculated in this manner was approximately
380 Btu/sec.

During the combustor development firings, the coolant water flow
rate and the coolant water temperature increase (outlet water tempera-
ture minus inlet water temperature) were measured. Measured thrust
chamber heat transfer, calculated by the equation

q = WeTpAT
where
q = Thrust chamber heat transfer, Btu/sec
we = Coolant water flow rate, lby/sec
€p = Average specific heat of water at 80°F, Btu/°F lby,
AT = OQutlet-inlet coolant water temperature, °F

was 300 + 30 Btu/sec, as compared with a computed value of

380 Btu/sec. The difference between measured and computed heat
transfer values is primarily attributed to the difference in the assumed
c* of 5350 ft/sec and the c* ~ of 5200 ft/sec generally encountered dur-
ing testing.

SECTION V
SUMMARY

A liquid oxygen (LOs)/JP-4 combustor was designed to specific cri-
teria and fabricated for use as a hot ionized gas source in magnetohydro-
dynamic {MHD) power generator system, A water solution of cesium
carbonate was injected into the combustion chamber to produce a high
ion concentration in the high velocity exhaust gases. The combustor
operating characteristics are summarized as follows:

1. The combustor operated successfully at oxidizer-to-fuel (O/F)
ratios ranging from 2.0 to 3.1, for combustion chamber pres-
sures ranging from 240 to 300 psia, and for seed flow rates
ranging from 0 to 0. 64 lby,/sec. Combustor power output
ranged from approximately 17.5 to 20.5 MW,

2. The combustor characteristic exhaust velocity (c*) without
seed flow ranged from 5220 to 5010 for O/F ratios ranging
from 2.0 to 3.1. The c* efficiency was 91 £ 1. 0 percent over
the range of combustor operation.

12
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3. At an O/F ratio of 2, 86, the characteristic exhaust velocity
(cg*) of the combustor decreased from 5100 to 4550 ft/sec
when the seed flow rate was increased from 0 to 14 percent of
the total flow rate (propellant and seed).

4, Pressure measurements obtained during combustor firings
indicated that the nozzle exit static/total pressure ratio was
0.32 + 0. 02, compared with theoretical static/total pressure
ratios of 0. 265 for frozen composition and 0. 29 for shifting
equilibrium composition.

5. The combustor operated with a stable combustion chamber
pressure; fluctuations were nominally +5 psia. Stability was
not significantly affected by the combustor O/F ratio, cham-
ber pressure level, or percent seed flow,

8. The combustor has proved to be highly reliable and essen-
tially free of operational difficulties. Run durations are
limited only by the propellant storage capacity.
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DESIGN DATA FOR THE COMBUSTOR

Nozzle Shape

Nozzle Exit Half-Angle

Nozzle Throat Diameter

Nozzle Exit Diameter

Nozzle Area Ratio

Injector Type

Injector Material

Injector Oxidizer Velocity at O/F = 2,6
Injector Fuel Velocity at O/F = 2.6

Injector Oxidizer Pressure Drop
at O/F = 2.6

Injector Fuel Pressure Drop
at O/F = 2.6

Thrust Chamber Material

Combustion Chamber Length
(Injector Face to Throat)

Characteristic Length, L*

Chamber Contraction Ratio
Combustor Coolant (Water) Flow
Combustor Coolant Velocity, Throat
Combustor Coolant Velocity, Chamber
Propellant Total Flow Rate

Oxidizer Flow

Main Fuel Flow

Secondary Fuel Flow

O/F Ratio

Chamber Pressure
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Contoured

0 deg

1,776 in.

2.00 in,

1,27

Coaxial

347 Stainless Steel
95 ft/sec

45 ft/sec

110 psid

35 psid

Mallory 3 Copper Alloy

10 in,

33 in.

3.61

15.0 lby /sec
90 ft/sec

45 ft/sec
4.0 lbpy,/sec
2.9 lby,/sec
0.8 1by,/sec
0.3 lbm/sec
2.6

270 psia
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